Laurent polynomials
$$CEt, t^{-1}$$
 = $\left\{\sum_{i=-m}^{n} a_i t^{i} \mid m, n \geq 0\right\}$

Q6, January 2020 (Solution by Raneeta Dutta and Neethu Suma-Raveendran.)

$$(XB)^2 \in K^{-1}$$
 show $K(X, IB) : K = 2$

$$XB \in K[K(IX) : K] = 2 \quad X^2 - X = (X \pm IX)$$

$$IXB \in K$$

$$= X IB \in K(IX) \quad K(IX) \quad X = 2$$

$$= X \times IB \quad X \times$$

[K(sqrt(alpha), sqrt(beta)) : K] = [K(sqrt(alpha), sqrt(beta)) : K(sqrt(alpha))] [K(sqrt(alpha)) : K] [K(1x)=1, 13 = a+D/X $-a = b \sqrt{X} - \sqrt{B} \in K$

Q3, January 2019 (Watch the video for Aaron's explanation.)

Q6, August 2019

Treat this like a MATH 104 problem: the factorization of a cubic of the form x^3 - a is always $(x - a^{1/3})(x^2 + a^{1/3})x + a^{2/3}$.

So, we need to adjoin the cube root of a as well as some complex root.

Claim: alpha is equal to the cube root of 2 and beta is equal to i (i.e., the square root of -1).

First, show that $x^3 - 2$ is irreducible over Q.

Proof. (Raneeta) It is 2-Eisenstein. (Dylan) Use the Rational Roots Theorem.

This implies that $x^3 - 2$ is the minimal polynomial of the cube root of 2.

Look at the field extension K obtained by adjoining the cube root of 2 to Q.

Next, show that $x^2 + 2^{1/3} x + 2^{2/3}$ is irreducible over K. Call its root omega.

This shows that the polynomial x^3 - 2 splits over the field extension L obtained by adjoining omega to K. We need to show that L is the smallest (with respect to degree) field extension in which x^3 - 2 splits. But it is because 2 and 3 are relatively prime.

Observation: (Raneeta) The splitting field of $x^3 - 2$ is Q($2^{1/3}$), omega), where omega is a primitive third root of unity. One can compute this.

Q3(b), August 2017

Observation: (Raneeta) We're looking for a non-separable extension.

$$\mathbb{E}_{\mathbf{x}}$$
.: $\mathbb{F}_{\mathbf{3}}(\mathbf{y}^{\mathbf{3}})$ = rational function field in y^3

$$\mathbb{F}_{3}(y)$$
 is a simple field extension of $\mathbb{F}_{3}(y^{3})$.

Find the degree of $F_3(y)$ over $F_3(y^3)$.

But this is not a separable extension. In particular, we have that $\{F_3(y) : F_3(y^3)\} = 1$.

$$=(\mathbb{F}_{3}(\gamma)/\mathbb{F}_{3}(\gamma^{3}))=1$$

Find a monic irreducible polynomial f(x) with coefficients in $F_3(y^3)$.